

Coding Stories

DSC #12: The DSC and the New Programming Language
by Katherine Bowers, Quinn Dombrowski, and Roopika Risam
November 2, 2021 https://doi.org/10.25740/wr764jc8892

We need to talk about coding.

Ever since DSC 7: The DSC and Mean Copyright Law, we’ve been putting an awful lot of code
in these books. Text comparison algorithms, machine-generated text, principal component
analysis, sentiment analysis.

But we’ve never had The Talk about Coding and DH and honestly, it’s overdue, because we
don’t want you guys to get the idea that we’re assuming that of course you, dear reader, are
comfortable with code. (What’s next, providing a properly LaTeX-formatted PDF download[1] so
the Data-Sitters Club might fit in with the computer scientist?)

It’s hard to do DH for long without running into code and programming languages that you don’t
know. This is true whether you’re new to DH, or built a whole career on it. Turns out it’s even
hard to watch the new Netflix “Baby-Sitters Club” series for long without a casual mention that
Claudia’s sister Janine is learning Python. Janine is a genius, but does it take a tech genius to
learn Python? Most of the Data-Sitters Club books have been in Python, but we’ve recently
started branching out into R.

What’s the difference between a programming language, a library / package, and a model? If
you’re going to dive into learning to code, what language should you choose? What’s it like to
work with more than one? “The DSC and the New Coding Language” has got you covered –
with some help from DH Twitter folks who answered our survey about all this.

Coding stories

Quinn

I spent 15 years “doing DH” – and even got hired for my dream job, supporting non-English DH
at Stanford – before I meaningfully learned to code.

Sure, one of the very first technical things I learned in becoming a DH person was XSLT
(thanks, David Birnbaum!) in 2006, but “learn some XSLT to generate some meaningful output
from the XML you’ve painstakingly marked up” isn’t usually what people mean when they say
you should “learn to code”. (Not familiar with XML, XSLT, or TEI? Check out DSC #5: The DSC
and the Impossible TEI Quandaries.)

Many times, I had tried to follow that clichéd “learn to code” advice. I took Python in library
school at UIUC in 2008! I got nothing at all out of it – granted, the course was taught by a grad
student who confessed on the first day that she only knew the older programming language

https://datasittersclub.github.io/site/dsc5.html
https://datasittersclub.github.io/site/dsc5.html

Perl, which operates using a very different kind of logic. The Python textbook for that class felt
like one of the most insulting things I’d ever encountered:

I didn’t need this metaphorical magic, I just needed to learn how to code! At least, that’s what
everyone kept telling me. But the class didn’t improve much from here; the midterm literally
involved matching pictures to words:

My takeaways from the one and only programming course I actually sat through for credit?
Functions are confusing, programming textbooks are asinine, and never try to learn Python from
someone who admits upfront to only knowing Perl.

That was in 2009. In 2015 I published a book about Drupal for Humanists. Drupal is a content
management system based on the PHP programming language and a MySQL database. I knew
neither PHP nor SQL, but I also didn’t need to. You don’t need to know how to operate a plastic
injection molding machine in order to build a Lego kit. Drupal works the same way: other people,
coding-people, put together highly configurable modules that you could install and set up the
way you needed for your project, all through a point-and-click interface.

During my six years of working in the central Research IT group at UC Berkeley, my boss (who
proudly identified as an engineer) would reliably write in my performance evaluations that I
should learn to code. Then a year would pass, we were always overwhelmed with user
requests, and there was never any time for me to put towards that goal. Repeat for another
year.

Only after I was hired in the Division of Literatures, Cultures, and Languages, and in the Library,
at Stanford University in 2018 was I actually – finally – in a position where I both actually
needed to learn to code, and had the time and space to do that.

What I learned (am learning?) is Python. My 2009 textbook couldn’t have been more wrong.
Python could not be further from magic. Programming languages are more like real, human
languages than we often give them credit for. If you’ve ever been serious about studying a

language (whatever that looks like – whether that’s maintaining a major Duolingo streak or
majoring in a language in college), you’ll have some idea about what I’m talking about. Learning
a programming language takes time, practice, but most of all, it takes use. You’ll only actually
get somewhere with a language if you use it. And given all the competing demands of life, you’ll
only use it if you have a compelling reason.

At first, using it sucks. You’re confronted, over and over, with your own ineptitude. Not only can
you not say what you want to say, you can’t even say something vaguely approximating what’s
in your head. You look things up in dictionaries, you awkwardly kludge together nouns and
verbs. With human languages, at least, assuming a sympathetic listener, you can thoroughly
mangle half of the grammar and still generally be understood. Programming languages are less
generous; they’ll throw an error and simply refuse to run if you stray very far in your syntax. So
you struggle. You look things up. You try again. You force yourself to stop copying and pasting,
and start re-typing it for practice. And after doing that enough times, one day you’re able to write
some of the code without consulting things you’ve written already. And then someday you
realize that when you Google how to do specific things, the info you find on StackOverflow
might not be something you could’ve come up with off the top of your head, but it basically
makes sense.

But you can only get there by practicing. And you’ll only practice if it’s worth it. And it’s only
worth it if it’s the only way you, as a humanist, can do the things you want to do. I’m not the only
Data-Sitter to have that experience, either…

Roopsi

Somewhere in the late 1980s, as hunched over an Apple IIe as an eight-year old could hunch, I
dutifully typed in a sequence of letters and numbers that—voila!—could deduce how old
someone was by entering the year of their birth. Our next act was to type in a string of
commands to make the “turtle” (protip: it looked nothing like a turtle) create lines on the screen.
[REPEAT 10 [REPEAT 5 [FD 2 RT 3] RT 20] Woo. Lines on the screen.

Not sure who had the bright idea to teach BASIC and Logo to elementary school students who
would much rather be playing Oregon Trail (the 8 bit version, thank you very much) but that was

a thing. In the early 1990s, my parents gave me a Mac LC that became my prized possession.
They weren’t the kind to give extravagant gifts, so clearly this was a ploy to position me for an
inevitable future as a South Asian in STEM. Naturally, they were thrilled when I used it to play
Oregon Trail (Oregon Trail Deluxe, to be exact—I’d leveled up in the world) and Where in the
World is Carmen Sandiego? To counteract the stultifying effects of such recreation, I was forced
to play The Castle of Dr. Brain, because science.

By the mid-1990s, the free floppy (curiously, they weren’t the large floppy kind but the small,
hard kind) disks advertising America Online started arriving in the mail, and I discovered that the
Mac LC didn’t have a modem, which was a tragedy. So, I asked my cousin, a wannabe teen
hacker (didn’t we all have that cousin?), how to access this magical portal of America Online
and was introduced to the world of PCs, Warez, AOHell, and at least 15 other ’90s cyberfelonies
(the statute of limitations have run out by now, right?).

My leap from the comfortable world of Macs to the land of PCs was cushioned by the
introduction of Windows 95, and after roughly 90 million hours and 75 installation floppy (i.e. not
floppy) disks later, I had turned my father’s work computer into my new toy. I certainly enjoyed
breaking Windows 95 over and over by screwing around with the operating system, though I did
not enjoy the long, disk-filled reinstallations. But I greatly preferred talking to strangers on the
internet (if you were on the SPINOnline AOL chatroom in the mid-90s, we were probably
friends), being angsty and misunderstood, making websites (Geocities-style), and occasionally
foraying into Dreamweaver and Flash when I was feeling adventurous. To my mother’s dismay,
none of this was setting me up for a Future in STEM™. (Astute observers will note that it
absolutely did set me up for a Future in DH™, which largely consists of talking to strangers on
the internet, being angsty and misunderstood, and making websites. Probably the occasional
cybermisdemeanor too.)

Despite my comfort and familiarity with computers and front-end web development, the backend
was the place where I broke things, reinstalled operating systems or applications, and started
again. Never again had I experienced my childhood successes at deducing age or instructing a
sham turtle to make lines. But that was totally fine—I had my internet strangers and my
websites. When I first started doing what would eventually be called “digital humanities” as a
graduate assistant at Georgetown’s Center for New Designs in Learning and Technology in the
mid-2000s, I had enough comfort and facility to do my job, which didn’t involve coding. But when
my research turned to digital humanities during my doctoral work, it was right smack in the
middle of the debate about whether one had to be able to code to be a digital humanist. I
couldn’t; therefore, I was a fraud.

When Miriam Posner’s blog post, “Some Things to Think About Before You Exhort Everyone to
Code,” came out, I found solace in her arguments about how certain people, from certain
demographics, were never socialized to learn how to code. That’s right! I was a woman of color
and not socialized to code and therefore I couldn’t do it, didn’t need to do it, and everything was
fine. (Conveniently forgetting that, in fact, my parents had bought me a computer, ostensibly to
prepare me for my great South Asian Future in STEM™.) I became a righteous defender of the
non-coders. I embraced out-of-the-box tools. People trying to make us code? Bigots, all of them.

And then, something happened. First, in the mid-2010s, Alex Gil decided that I would be an
ideal experiment for his goal of convincing people to join the world of minimal computing. During
a whiskey-fueled bender that lasted until 6am one Saturday night, he told me I would be
learning how to use Jekyll, the static-site generator. An hour later, I knew how to work a
command line, how to create a Jekyll site, and how to use Markdown. Then, in the Summer of
2018, a number of friends and I undertook the project Torn Apart/Separados, a series of data
visualizations responding to the Trump Administration’s family separation policy for migrants at
the U.S.-Mexico border. Since our site was built in Jekyll, my familiarity with it, along with my
comfort in the command line meant that I could make my content contributions without pestering
my teammates. However, the coding was being done by Moacir P. de Sá Pereira, so I didn’t
have to worry about that. Later, we undertook a second volume of the project, in which I took the
lead on developing concepts for our data visualizations. We’d been joined by an expert coder
who wanted to use their skills to add layers of beautiful complexity to the visualizations—and
then they got busy with other things and could not work with us. We had two options: 1) we
could scale back our plans to create visualizations within the scope of having one expert coder
or 2) it was all hands on deck and I, the ardent defender of not-coding, would, gulp, have to
learn how to code. Being reasonable people who know our limitations…. we chose the latter.

I bought a hoodie. I stocked up on energy drinks. I watched every Marvel movie. I was
becoming a code-bro. It turned out, there was nothing preventing me from learning how to
code—except a good reason to put aside other work and learn. In my head, in order to code you
had to have done a degree in computer science or a coding bootcamp, where all the code was
downloaded into your head and just waiting for you to execute it. I didn’t realize that it was a
creative and iterative process, a collaborative problem solving process, where if you learn the
fundamentals of computing, figure out how to use Stack Overflow, read enough free tutorials,
and occasionally phone a friend, you can figure it out. Who knew? Now I do.

https://miriamposner.com/blog/some-things-to-think-about-before-you-exhort-everyone-to-code/
https://miriamposner.com/blog/some-things-to-think-about-before-you-exhort-everyone-to-code/
https://xpmethod.columbia.edu/torn-apart/volume/1/
https://xpmethod.columbia.edu/torn-apart/volume/2/

Having learned how to code in JavaScript, I’ve been able to make relatively easy leaps to
Python when the situation requires it. But, more importantly, being able to code has opened up a
new world of possibilities, for new levels of control that I can have over my data and over data
visualization that I’m now implementing in a project on W.E.B. Du Bois. I am free from the
constraints I was encountering with my Neatline prototype, and this “non-coder” has built a
backend for a progressive webapp using Node.js, Babel, and Webpack. A few years ago, I
didn’t even know what those words meant. I still use out-of-the-box tools when the situation calls
for it, like for workshops on data visualization, working with students, and more recently when I
chose to build a WordPress page (ugh) rather than a Jekyll site to make life easier for a group of
collaborators. But the difference is, I now have choices.

Katia

Like Roopsi, I always preferred Oregon Trail to that turtle, but nevertheless, when I was in high
school in the 90s, I signed up for a class called “Business Computer Programming” because it
sounded “useful.” I had always been good at math and I had taught myself HTML a year or two
before so I could build Geocities websites with my friends, and I thought, well, why not. In the
class, we learned database programming with Microsoft Access and something called Visual
Basic. I was pretty good at it, but I didn’t really understand the point of it. How did any of this
relate to business? Business also seemed kind of vague. But all of this was part of this equally
vague to me adult world where people did things with computers in professional ways.

http://www.roopikarisam.com/global-du-bois/

When I went away to university, I signed up for computer classes. I started by taking CS 101,
where we learned C++. CS 101 was kind of fun. It was doing things with math and code and
making cute games. I was not especially good at it, but I liked it. I even signed up to be an
undergrad teaching assistant for it so I could do it again. I was an undergrad TA for the
university equivalent of my high school Visual Basic class, CS 110, too. And I took more
computing classes. I learned PerlScript. And Java. And I thought, maybe I could even get a
degree in this. I started doing the sequence to do a degree… but as the programming classes
got more advanced and as I struggled to keep up, I realized that the parts of programming I
liked were by far in the minority to the parts of it that I just wasn’t good at. The way the classes
were taught was antithetical to actually learning something so hands-on as programming for me.
Hardly anyone had a laptop in the late 90s and early 2000s, so we all sat in large lecture halls
with hundreds of other students watching the professor lecture to us from slides about how to do
code while taking handwritten notes in our notebooks. Then, because our own late 90s
computers were too slow to actually run the compilers in most cases, we would have to check in
for a timed slot at a computer lab to do the homework. Also, everyone else in these classes
seemed to have a clear vision of why they were doing this or how it could be useful, and it just
didn’t seem all that useful to me. Like, I could see that they were becoming programmers, but

how you get from doing these cutesy games we were doing where triangles moved around to
doing something useful was a mystery.

Then I went away to intensive Russian language summer school, got back and took a grad level
Russian poetry class, studied abroad in St Petersburg, and the rest kind of wrote itself. I quit
computer science. I did a Russian degree and kept on going… until now I find myself a Russian
lit professor with an unhealthy interest in narrative form and genre. But, as I have been learning
more about the ways that digital humanities text analysis methods can help address research
questions I have, I find myself coming back to programming.

At first this was just thinking about ways machines could read text. Some Dostoevsky scholar
friends and I did a couple of Twitter projects where we “mined” (not using a machine)
Dostoevsky novels for dialogue that we could turn into tweets to create a first-person Twitter
version of each novel (you can read about one of these here). This process of “tweet mining”
required intensively close reading and we were inspired to think of other ways that the digital
could help us better understand the text. I discovered Voyant Tools, and then TEI, and then my
friend Kate Holland and I launched a project called “Digital Dostoevsky.” We planned to create a
TEI corpus of Dostoevsky’s texts. But we were not so much interested in the TEI as we were in
what to do with the TEI. We wanted to use it to answer research questions. And here we began
to have to learn programming languages.

Tagging a novel using TEI requires some use of XML. And so we learned some basic XML. And
I mean, really basic. Our team of two Dostoevsky profs (Kate and me) and three grad students
is all pretty new to all of this. And I have definitely forgotten everything I learned 20+ years ago
when I struggled with C++. But we were figuring out XML and our XML file was compiling with
no errors and we were feeling pretty good. Then, in order to do something with the XML, we
took a class at DHSI from past guest Data-Sitter and TEI aficionado Elisa Beshero Bondar
called “Processing XML and TEI into What?” where we learned XPath, XQuery, and XSLT. The
class was great, but it was challenging for our team. It was really maybe just a step or two
beyond where we were.

During the DHSI class, which was conducted on Zoom, I was fielding a lot of questions from
other Dostoevsky team members in our private Slack about how to connect our experience with
XML with these new ways of using it. We had already learned really basic XML and we had
done some HTML, so we had done a little programming. But we hadn’t encountered a
programming language that required functions to be written before. The XML we had been
writing was entirely tied to TEI and identifying elements of our text. We hadn’t thought through
the logic of programming languages, other than to make sure our bracketed expressions were
always closed. But what we took away from this course was a strong sense that each language
had its own grammar. You had to follow the specific language rules of the X-family of languages
to do XPath, XQuery, and XSLT. And when you mixed in other languages, like RegEx or HTML,
you had to follow their rules for the parts where you were including them.

Team Dostoevsky valiantly completed our first DHSI course, and then we started week 2. For
week 2 of DHSI, we had signed up for a course called “Programming for Humanists,” which

https://blogs.ubc.ca/cp150/digital-outreach/rodiontweets/
https://digitaldostoevsky.com/

turned out to be a 20-hour deep dive into Python. Taking this class, like the first DHSI class,
revealed some things about programming languages that I had not anticipated, but that I think
any humanist getting into DH and wondering about where to get started with coding should
know. The class was really at a good level for us. It started with the command line, got into the
basics of coding Python, and then introduced a couple things you could do with Python (to learn
about my adventure with Python and sentiment analysis in the class, check out DSC #11).
Everyone on Team Dostoevsky was following really well. But what I realized, fielding questions
in our private Slack during the class, is that, just as we hadn’t really considered programming
languages to have a grammar like Russian (a language we all know way better than XML,
ahem), we hadn’t thought through a kind of universal logic of programming languages.

If you think about Tolstoy’s famous opening line, you could say that “All programming languages
are alike; each programming language is unique in its own way.” The C++ that I learned at
university was really, really different from something like XPath, which was, in turn, really really
different from Python. That is, it looked different and its expressions were different. But the basic
logic of coding was present in all of these. You had to declare your variables as objects to use
them. You had to do things in a logical sequence so that the compiler would know to do x before
y. You had to make sure your loops had a stopping point or your computer would crash. This
logic of programming languages becomes intuitive when you learn a couple of them, but for
beginning programmers learning their first language, it isn’t in place yet. I was able to switch
easily from week 1 to week 2 of DHSI because I had that background from high school and
university that I thought I had forgotten, but the other members of Team Dostoevsky,
encountering a new programming language for the first time, and then a second one in a really
quick time span, were figuring this out as they went.

I think the take away from all of this is that programming languages are just languages that can
help you do various things. The best programming language for you is the one that you can see
the point of using, that’s valuable for your work. The issue I had with my high school and
university programming classes is that I didn’t see the point. When I was learning XML and
Python, I could see the point and this made it all higher stakes.

That all being said, since I have begun doing this Digital Dostoevsky project, Team Dostoevsky
has known that we will need to do some coding to do something with our TEI corpus. And the
question of Python vs R has haunted us. Everyone we have spoken with and asked for advice
about which programming language would be most useful has had a strong opinion, but they
are evenly split between Python and R. Quinn, when I asked her last year, was pro-Python, and
her reasoning was that Python is easier to find answers about via a search engine (“Whose
bright idea was it to name a programming language after a single letter?!?! Googling for that
SUCKS!!”) and, also, there’s more non-English NLP stuff available via Python. That seems
pretty compelling, especially given our Russian corpus! But what the differences are between R
and Python, and what is better for what, are still elusive. We signed up for “Programming for
Humanists” because we hoped it would give us some insight into the Python vs R debate, but,
as it happens, it turned out to just be an intro to Python. So, I guess, it has solved that question
for us. We started with Python and will continue with Python. But what about R? And which is
better? And how do you choose?

https://datasittersclub.github.io/site/dsc11.html
https://datasittersclub.github.io/site/dsc11.html

Quinn
Remember how in DSC #10 I wrote about how working with R when you only know Python is
like trying to read Italian – or Romanian – when you only have high-school Spanish? One goal I
set for myself for summer 2021 was to actually learn some R. Io programmo, tu programmi, lei
programma… Programez, programezi, programează…

But before I tell you about that, I should probably start with a few words on Python.

Danger Noodle Club

In the Before-Times, I ran something I called “Danger Noodle Club”, after one of many internet
memes / nicknames for snakes. In theory it was a Python co-working/co-learning group; in
practice, half the time it was a group of DH folks strategizing about ways to get things done that
didn’t require busting out code. Nonetheless, it was helpful to have a place to share the things I
was learning, and get help debugging some of the workflows I was trying to figure out how to
translate into code.

Do you ever have trouble viscerally summoning up the memories of what day-to-day Old Normal
used to be like? I do. And the early stages of when I started actually learning Python are on the
other side of that gulf. As we’ve talked about in DSC #8, DH Twitter is a thing. It’s where I often
go for help with my coding problems, and I try to pay it forward (especially with multilingual stuff)
where I can. But I also use it when I’m trying to work through stuff, even when I don’t need help
as such, and I can reconstruct some of the process through old tweets:

https://datasittersclub.github.io/site/dsc10.html#quinn
https://datasittersclub.github.io/site/dsc10.html#quinn

From where I sit now – fortunate to be double-vaccinated and boostered, and maybe days away
from my older kids getting their first COVID shots – Python feels comfortable. Conversational.
Even more conversational the way I write it, which is to say, without structuring it as a set of
functions. Instead, I write all my code in Jupyter notebooks as a series of commands to be
carried out in sequence. I reuse some of my code between projects, if I need to do the same
thing over again, but through copying and pasting (or retyping) and modifying. I still struggle with
writing functions, turning a specific step in my workflow-du-jour into a more abstract thing that
could be applied to any input that meets a specified set of requirements. Even though I can now
claim some ability to write code – that thing that was always lacking in my performance
evaluations– I still sometimes hear my engineer ex-boss’s voice in my head, ranting about those
humanists who think they can code, but they just write “spaghetti code” and none of it is
properly architected and it’s all a mess of dubious value. Sometimes I even stumble across
those same arguments being made in DH circles. I don’t think it’s so black-and-white, though.
Do I have any business architecting scalable software? I do not! But I also have neither the
background knowledge nor practical skills to bake large-scale desserts, and I’m not going to
beat myself up over that, either. Just because a specific technical implementation of a particular
method wouldn’t scale up well doesn’t mean it’s invalid when applied to a smaller problem. I

https://digitalhumanitiesnot.wordpress.com/2021/10/06/programming-fetishism/
https://digitalhumanitiesnot.wordpress.com/2021/10/06/programming-fetishism/

can’t bake a cake for your 100-person wedding, but I can make my kid really happy on his
birthday with a little cake mix and a little Googling.

Here’s what Python feels like for me today. There’s a rhythm to how things come together. You
define paths, change directories, iterate over a list of files in a directory. You open files, and in
doing so, you state what you’re going to do with them: reading, (over)writing, appending. You
read the files into text strings. Maybe you split up those text strings into a list, maybe you modify
them. Then you run some functions that come from some package or another – maybe you’re
tagging entities, maybe you’re converting book titles and authors into a browser-friendly URL
and scraping the resulting webpages. Then you put your results somewhere: maybe it’s a
Pandas dataframe (like a spreadsheet, using Python), maybe it’s a list, maybe it’s something
that a particular package provides for the output of its functions, like spaCy’s “document” object
for NLP outputs. And finally, you probably write out some part of those results to something
more permanent, like an output file. And all of this takes place through a series of instructions
that, while sometimes verbose, feels like an almost-self-documenting workflow. You lay out all
the cobblestones along the garden path that you’re building, and you can walk along them,
seeing them each in turn as your feet move from one to the next.

And I had assumed that R would be like that. Maybe instead of cobblestones, R would be
bricks. They’d fit together a little bit differently, but the rhythm and patterns would be largely the
same, and I’d walk step-by-step between them.

But it turned out I was wrong: for some things in the R universe, they’ve invented Star Trek-style
transporters.

Q Learns some R

I started trying to learn R the way one often starts learning a language, human or otherwise. I
acquired some books.

My first stop was Humanities Data in R, by Taylor Arnold and Lauren Tilton. I had humanities
data! It was novel-shaped. But I should’ve been a better close-reader here: the first sentence in
the book’s blurb reads as follows: “ This pioneering book teaches readers to use R within four
core analytical areas applicable to the Humanities: networks, text, geospatial data, and images.”
Okay, yes, it mentions “text” as one of the four areas. But my interest in networks, geospatial
data, and images is much more limited – not least because I don’t have a lot of that kind of data,
at least, not compared to my mountains of novels. And if this book teaches R with the goal of
segueing into each of those areas, that’s a sign that it’s more general than I’m looking for.
Because, to be honest, I’m not actually looking to “learn R”, even to the (far from “fluent”) extent
that I “know Python”. I just want to be less confused when confronted with the computational
text analysis code that Mark writes. (Mark Algee-Hewitt is the Director of the Stanford Literary
Lab and our Associate Data-Sitter. If I’m getting code from him, odds are it’s going to be in R.)

And, as I should have suspected, this book didn’t really work for me. After a chapter on installing
R, it set about demonstrating R for calculations that were at first way too easy (like how to add

1+2), but quickly became way too confusing (logical vectors). I seriously struggled to connect
any of this to anything I wanted to do with R, which is more of a challenge common to
programming textbooks than a particular flaw with this one. Please do check out this book if you
actually want to learn R!

I don’t envy programming language textbook authors, whose readers may be coming from all
kinds of backgrounds, with many different goals. There’s no way for books like these to be
everything for everyone, but the stakes aren’t trivial: if someone tries a programming language
book like this, and walks away frustrated, they may (incorrectly!) conclude that they’re the
problem, that programming is inherently over their head, and not that the pedagogical style and
focus wasn’t a good match for them. I mean, to this day, I have never gotten all the way through
any kind of “intro to Python” book/course/whatever. But I still successfully use Python every
week, if not every day. If you’re struggling to get through some kind of pedagogical material for
learning to code, especially if that material doesn’t focus on what you want to use the
programming language for, put it aside. Try something else. The problem isn’t you.

For round two, I went back to another book that I tried years ago when it first came out, but back
then I couldn’t make any sense of it. That book, Text Analysis with R for Students of Literature,
was co-authored by Rosamond Thalken and Matt Jockers, the latter of whom also created the
Syuzhet package for sentiment analysis that we talked about in DSC #11. The second edition
came out in 2020, and it incorporates a set of packages known as the “tidyverse”; we’ll talk a
little more about that later in this DSC book, as part of our survey of DH Twitter.

With the benefit of some Python already under my belt, this book worked pretty well for me. I
was a little uninspired by all the Moby Dick (Herman Meh-ville living up to his name), but since
it’s important for the data to be redistributable, I guess I can forgive it not being as fun as
Baby-Sitters Club novels. And admittedly, it does seem to be hard to completely get away from
arithmetic in the earliest stages of programming textbooks, but at least the reference was
fleeting before the book into stuff that was more relatable.

And I have to say, even working my way through the first four or five chapters transformed the
gibberish of Mark’s Typicality code (written in R) into something I could actually make sense of.
Those line-by-line comments on the R code in DSC #10? I wrote almost all of them myself, after
going through the first few chapters of Text Analysis with R for Student of Literature, though
Mark corrected a couple of my misinterpretations.

But I must also confess that I don’t really like R. And the more R I learn, the more squeamish I
get.

Maybe I’m just looking at it wrong. Maybe the problem is that I was expecting it to be like Python
with some syntax differences. But really, it’s not. It feels different.

Python felt roughly like learning another human language. R feels… clipped to me. Jargony.
Sometimes even a little deus ex machina. There’s this super-abbreviated syntax, which I guess
makes things faster but also obscures steps taking place outside of your view.

https://datasittersclub.github.io/site/dsc11.html#the-syuzhet-incident
https://datasittersclub.github.io/site/dsc11.html#the-syuzhet-incident
https://datasittersclub.github.io/site/dsc10.html#running-typicality
https://datasittersclub.github.io/site/dsc10.html#the-typicality-function

There’s an R package called Radiant for “business analytics” that gives you a sort of statistics
dashboard. If you’ve installed it, you can simply write data(‘Titanic’) and that loads a data set
about passengers on the Titanic, with their name, sex, age, ticket number, fare, and whether
they survived. And if you have any data that is set up as pairs of numbers, you can just write
something like plot(mydata) and it will spit out a nice graph. You don’t have to build yourself a
path of finding and opening files, reading in data, transforming it, and setting up a plot: you can
go from nothing, to Titanic survival data, to a graph of two columns of that data set, in just a
couple lines of code. There’s no garden path to assemble: it’s “Beam me up, Scotty,” and you go
from being on some strange planet to back on the Enterprise in a sparkle of light.

That said, while R has some single-line commands for things like plotting data that feel almost
magical when you’re used to all the setup that goes into doing the same in Python, it’s not like
there’s a one-liner for everything. You can’t just type entities(MyText) and have it find all the
named entities in your text, like we worked through doing with the spaCy Python library in DSC
Multilingual Mystery #2.

It didn’t take too long to get used to the fact that <- is the R equivalent of = in Python. But the
biggest revelation for me was the fact that in R, you can freely use a period in variable names
that you come up with, the same way you’d typically use _ or - in Python. For the longest time, I
kept trying to Google parts of Mark’s variable names, thinking they were built-in R functions,
because they were next to a period. R’s understanding of lists also hurt my head. In DSC #11, I
pushed a Python list of positive and negative sentences to R in order to run Syuzhet on those
sentences. But I was taken aback by what I got: R imposed a weird internal hierarchy on the
data that it didn’t have in Python, and I didn’t want.

All I wanted was a list of sentences, not a list of abstracted containers that each contained one
sentence. To get what I needed, I had to “flatten the list” using a function called “unlist”, which
turns the “list” into an R “vector” that looked more like what I wanted.

When you learn languages – human or programming – some of them feel good, and others
don’t. Sometimes you can pinpoint why: maybe it’s the phonology (the language has sounds
you like), maybe it’s the morphology (the way the language puts together words), maybe it’s
syntax (the way words combine into phrases and sentences). I love Japanese and Khmer

https://radiant-rstats.github.io/docs/
https://datasittersclub.github.io/site/dscm2.html#getting-started-with-spacy
https://datasittersclub.github.io/site/dscm2.html#getting-started-with-spacy
https://datasittersclub.github.io/site/dsc11.html#moving-between-python-and-r
https://datasittersclub.github.io/site/dsc11.html#moving-between-python-and-r

phonology, Slavic language family morphology, and some wrinkles of Macedonian syntax (like
clitic doubling, where you have to say things like “I read it the book”.)

I don’t think I like R. And I don’t think that’s just because I’m more proficient with Python. It’s not
that I’m aggravated that I can’t turn what I want to do into R code – whatever, I’m getting pretty
okay at turning my desires into Python code, and it’s not like you get bonus DH points for writing
code in one language versus another. But I. Do. Not. Like. Writing. R. Those one-liners, like
graph (whatever), make me uneasy rather than enthusiastic. I’m like Dr. McCoy, who hates the
transporter; to paraphrase him, “I signed up to do computational text analysis, not have my text
scattered back and forth across packages that do weird things with one-liners by this
programming language.”

I’m glad I’m getting to the point where I can start to make sense of other people’s R code, and
implement it a little bit myself when there’s an R-only package I need. But I don’t think it’s a
bandwagon I’ll be jumping on anytime soon.

Sneakers, shoelaces, and code

Katia and I are the only two Data-Sitters on the west coast, which is cool because it means I can
blow up her phone with text messages when I’m playing around with DSC stuff at 9 or 10 PM
Pacific. While working on DSC #11, we got to talking about packages one night.

My phone beeped in rapid succession.

“tbh I am so confused that I don’t understand what a package is and what it does or
how it is different from a library or how these things relate to text.”

“The training I have had on this should not be called training… more like a
confusing trainwreck 🚂😂”

I always appreciate Katia’s reality checks when I get too deep into technical jargon.

“Packages and libraries are near-synonyms,” I texted back. “It’s just a bunch of code that does a
specific thing. For any sort of natural-language processing stuff, a package or library may draw
on different models. Models are the bits with the rules about what’s a noun and what’s a verb, or
even how to separate words and punctuation.”

“See, why has no one so far been able to explain this in a way that makes sense?” Katia
replied. “It took you 4 text messages.”

And as we bounced ideas around, we realized that a good Data-Sitters Club way to explain this
might be footwear.

See, libraries or packages (the terminology is used loosely to refer to the same thing) are written
for a particular programming language, just like shoes are made in specific sizes. Even if a shoe
is totally your style, if it doesn’t fit your foot, you can’t wear it even if you love it. Now, sometimes

https://memory-alpha.fandom.com/wiki/Transporter_phobia
https://memory-alpha.fandom.com/wiki/Transporter_phobia

people write a wrapper for a specific super-popular library to make it possible to use it in a
different programming language than it was originally intended for. A lot of the natural-language
processing (NLP) stuff we’ve done in the Data-Sitters Club has used spaCy, which is written for
Python. But there’s a package called spacyr that you can use in R. So if you imagine that spaCy
is a size 10 shoe, spacyr stuffs a few cotton balls in the toes to make it wearable for people who
wear size 8. But it’s not a solution for everyone; you’ll need a different wrapper if you work in
another programming language (or wear a different size shoe in our analogy).

There are many, many styles of shoe – just like there are many, many packages / libraries that
people might want to use with different programming languages, or have available in different
shoe sizes. But models add another wrinkle. Models are shoelaces.

Imagine you’ve got two pairs of sneakers in your size: high-tops and Keds.

It’s a little harder to shove your foot into the high-tops, but they look really cool (in that 90’s kind
of way). Keds are easy to slip on, and they give you a nice casual look. They have different
aesthetic functions – much like how different packages or libraries output their results in different
ways.

Keds and high-tops come with default shoelaces, just like how NLP packages often have a
default model. (It’s usually some variety of modern English, which makes it easy for people who
work on modern English to forget that they need to think about languages, since English is a
language too.) Some packages are really only designed to use that default model – just like if
your high-tops have really tiny eyelets that make it hard to remove the default shoelaces, let
alone re-lace the shoes with cool patterned neon ribbon shoelaces. With enough work rewriting
the code (or going to town on your high-tops with a knife or drill), you might be able to make
them work with a different model / shoelaces, but it’s not for the faint of heart. Other packages
are designed to support different models, and may already include a number of models as part
of the package – just like a pair of Keds that comes with a couple different shoelaces in the box.
And here’s the fun part: sometimes you can use a model that you like from one package with a
different package, just like switching your favorite laces from your high-tops to your Keds. For
instance, there’s a Python library that lets you use the NLP models from Stanza (an NLP
package created by Stanford NLP) in spaCy, a different NLP package. And your best friend,
who wears a different shoe size (or codes in a different language), might also be able to use

https://cran.r-project.org/web/packages/spacyr/
https://spacy.io/universe/category/nonpython
https://spacy.io/universe/category/nonpython

those same laces (or model), depending on how her package was written: you can also run
Stanza in spaCy in R if you have both the R package spacyr installed, and the spacy-stanza
Python package installed.

But that’s not all! Maybe you’re like Claudia Kishi and your aesthetic cannot be adequately
captured by store-bought shoelaces. (Or maybe you’re working with text where some aspect of
an out-of-the-box NLP model isn’t working well.) With a lot of packages, it’s possible to make
and use your own model, just like how Claudia might braid some yarn and lace it through her
Keds.

All of which is to say, even though there’s packages for Python where there’s no good
equivalent in R (and vice-versa), the answer might not always be that you have to learn both. At
least for major, widely-used packages, you can start by looking for a wrapper – or a few cotton
balls to shove in the toes of shoes that don’t quite fit.

Dear Reader: More Coding Stories
We were caught by surprise to see how many people shared their own coding stories in
response to this Data-Sitters Club book. With permission, we’re including them here to add
more voices to this conversation. If you’d like to share your story, too, (regardless of where you
started or where your journey has led!) so we provided a way to do so on the last page of this
zine!

Philip Allfrey (via a Twitter thread)

This latest episode of the #DataSittersClub has provoked lots of thoughts, the first being that,
now that I stop and think about it, I have been coding on an almost daily basis for the past 20
years! Over that time I’ve used BASIC, Matlab, LaTeX, C++, Fortran, Linux shell scripts, Awk,
PHP, Javascript, Typescript, as well as various tools/libraries/frameworks written in these
languages (and HTML/XML and CSS, but those aren’t really programming languages). But for
all that, I have never had formal instruction in “how to code”, everything has been self-taught
(despite some of these skills being necessary for my masters/PhD). As Katia alludes to in
DSC#12, I think there are strong parallels with language learning. The first time you learn a
language other than your mother tongue, you need to learn grammar. The first time you learn a
programming language you need to learn the “grammar of code”. (Aside: in addition to
grammar, you need logic to correctly structure your code, and that gives us two of the three
parts of the trivium. What would correspond to rhetoric – documentation?) Human languages
have parts of speech: nouns, verbs, pronouns, adjectives. Programming languages have types
of variables: strings, floats, arrays, objects. Human languages have clauses: relative, indirect
speech, purpose, etc. Programming languages have control structures: conditionals, for loops,
while loops. And so on. Once you have pigeonholes for these concepts in your brain, then
learning the next (human or programming) language is easier – you learn the specific
vocabulary, alphabet, and syntax of the language on top of these basic concepts. A nice
demonstration of how these coding concepts are independent of the language-specific

https://twitter.com/dr_pda/status/1456074863823577089

implementation is the LOLCODE language, based on the lolcatz memes of a few years ago.
E.g. a basic loop printing the numbers from 1 to 10 is

HAI 1.0

CAN HAS STDIO?

I HAS A VAR

IM IN YR LOOP

 UP VAR!!1

 VISIBLE VAR

 IZ VAR BIGGER THAN 10? KTHX

IM OUTTA YR LOOP

KTHXBYE

On a side-note, Eve provides an interesting new human-centred take on programming. Similar
to Jupyter notebooks, text and code are intermingled, and order of code blocks doesn’t matter.
This discussion has made me wonder if I should write a language-learning textbook for
programmers! Which reminds me of being in my teens, teaching myself Latin (from a book), and
wanting to write a Latin parser in BASIC. I got as far as a name (TransLatin) and a logo…

I also enjoyed reading about the Data Sitters’ early experiences with computing, particularly as
a few days ago I came across a bag of stuff (ephemera? paraphernalia?) relating to my first
childhood computer, a Commodore 64

https://en.wikipedia.org/wiki/LOLCODE
http://witheve.com

I had forgotten that a) 5.25” floppy disks came in plastic cases like CDs b) I had made an
inventory of all my games c) I had written instructions for my parents (with ASCII art!) for how to
use the computer d) I had helped a stegosaurus & a brontosaurus survive through five eras.
Also, I wonder what that program was. Looks like music of some sort. I might have to fire up an
emulator and type it in!

Sharon Goetz (via email)

Most kids at my school had more discretionary money than I did, and most didn’t have a
computer. The high school taught a secretarial skills class with boxy IBM typewriters; I hid the
(forbidden) games I played on the household computer. Neither my father nor my high-school
guidance counselor thought I should go to college—girl, and not white. Flip that around,
however, and I was a geek who liked Zork II and learned how to program an HP 28S calculator
to play simple tunes and draw fractals on its little four-line screen … then majored in English,
thanks to impostor syndrome. The only computer class for non-majors taught Scheme, but after
figuring out how to use my university-provided Unix shell account, I taught myself TeX and
HTML: they seemed useful.

By then, parts of the humanities computing community had become web-visible. Aside from a
two-year break to document software professionally and squint at Lisp a bit, I figured out emacs
on Windows (thanks, Markus Hoenicka) for TEI-SGML with DTD, then TEI-XML and XSLT. TEI
and an understanding of software-development cycles kept me out of debt across my doctoral
work in medieval manuscripts, via part-time gigs. I still wasn’t a programmer/coder, right,
because coders used C++ or that new thing called Java. There seemed no way to assess
objectively what I knew or didn’t, since with some quiet minutes I could teach myself more; there
weren’t “real” jobs for XML yet, e.g. structured text in publishing. I was alt-ac before we called it
that, a bit too early for DH postdocs, and a local bafflement for trying to combine computing and
multilingual manuscripts. Apparently, both were a distraction from looking ready to teach
Chaucer.

There seemed little way to appreciate what I knew or didn’t, whether objectively or for myself. I
taught myself more XSLT, for once with support (thanks, Kirk Hastings). I taught myself enough
PHP, then enough JavaScript, to work around XSLT’s limitations for transforming epub XML to
TEI-XML, since XSLT didn’t like 3-4 MB files; that’s ~1200 pages of printed scholarly edition with
all the trimmings. Python wasn’t so popular then, but later, I taught myself enough to convert
dozens of Ghost blog entries to Confluence wiki pages. Still not a coder, perhaps—those aren’t
uses that most software engineers would recognize as professional, non-hobbyist (despite two
solid decades of TEI). But I’ve been here all these years, writing code.

Jacqui Sahagian (via the Scholars Lab blog, excerpted with permission)

I have always been a creative person, an artist even. In undergrad I majored in creative writing
and was in a punk band. I hated anything to do with numbers, science, computers, or making
money. I saw myself as “not like other girls.” I read books like The Catcher in the Rye and On

https://scholarslab.lib.virginia.edu/blog/the-romantics-didnt-want-me-to-code/

the Road and believed I identified with the male protagonists. I thought being suicidal made me
an interesting person. I never thought I would do anything “digital” or learn to code.

(Read the rest of “The Romantics Didn’t Want Me To Code” at the Scholars Lab blog)

Heidi Tebbe (via a Twitter thread)

Really enjoyed this one! Like @roopikarisam, I first learned to code in the 80s w/ BASIC and
Logo (LOL at “sham turtle”) & like @kab3d I watched college professors in the late 90s lecture
from slides about how to code while I took handwritten notes (C instead of C++ for me).
Reading your thoughts on R were an interesting counterpoint to how I first started using R… I
had a hard time when I tried to learn Python b/c it’s just different enough from other languages I
knew that the differences were grating; I picked up R more quickly because the syntax was so
different. But now I use Python for work, so the danger noodle got me in the end.

Jeff Tharsen (via a Twitter thread)

I teach R and Python (& a couple of other programming languages) in my courses, but I’ve been
writing code since the age of 7. The most important point is that computer languages are
stupidly easy (imho) compared to human languages, which contain nuance and slang, and
poetry.

Paul Vierthaler (via a Twitter thread)

An excellent reflection on coding and DH! My own coding journey started in 2011 (ignoring an
abandoned attempt at Perl and some BASIC dabbling in my youth) was Ruby -> R -> Python
(with ventures into JavaScript and C land when fancy viz or speed are of the essence). I’m
thoroughly a Python partisan these days, but I’ve never been fully satisfied with viz options.
Matplotlib works but feels very dated. More recently I’ve been experimenting with plotly, but
sometimes shoehorning my data into it can be a hassle. I kind of wonder if I’d be more of an R
partisan if I hadn’t left before the advent of the tidyverse. But I made the switch because I was
doing all of my text cleaning in Python and then analysis in R, and I just needed a simpler
workflow. At the time R was not great with Chinese. But the key to getting programming to stick
for me was simply finding a problem that required I learn. I bailed on Perl because I didn’t really
have a goal. Once I had a question I wanted answered, the rest fell into place. Well, that and
having the flexibility that comes with early dissertation work (and having an advisor who looked
the other way for the six month trail-by-fire in which I banged my head against the wall trying to
figure out the basics)

[1]

No shade meant towards LaTeX (which, heads-up, is pronounced LAH-tek) as such: if your
scholarship regularly involves complex formulas, syntax trees for linguistics, or other gnarly
layout things, you’ve got to learn it, and it’s a game-changer for publishing that kind of work! But

https://scholarslab.lib.virginia.edu/blog/the-romantics-didnt-want-me-to-code/
https://twitter.com/ideaofhappiness/status/1455989766722314242
https://twitter.com/thars3n/status/1455579872911364097
https://twitter.com/pvierth/status/1455550139825721352
https://datasittersclub.github.io/site/dsc12.html#id1

as we’ve been saying across multiple books now, technology is social. It’s not just the tech, it’s
the context. LaTeX has a distinctive and immediately-recognizable look. It’s also ubiquitous in
some of the “harder” technical fields adjacent to and intersecting with DH. So in practice, it can
end up being like Esprit:

It’s a visible and unmistakable symbol of being part of an “in-group” of cool kids. And even if
your mom bought you a near-identical solid-colored sweatshirt from K-Mart and you
accessorized it to perfection, your outfit still wouldn’t get you the same social credit in the
middle-school cafeteria as if you’d worn a sweatshirt with ESPRIT emblazoned on the front.

Some people, particularly on the more computational side of DH, will take your scholarship more
seriously if you use LaTeX. Some venues, like the Computational Humanities conference,
flat-out require submissions in LaTeX. I’m not a fan, in the same way that I didn’t appreciate the
“Esprit or get out” attitude among middle-school cliques. It imposes a barrier that discourages or
downright keeps out people who have worked hard to learn the computational skills they
actually need to do this kind of scholarship, and can’t additionally invest the time to learn how to
wrangle an unfamiliar publication format on top of it.

So, yeah, we’ve been writing a lot of code-centric books lately for the Data-Sitters Club. But
LaTeX is the wrong medium for what we’re doing here with our project. The vibes are all wrong.
But don’t take my word for it: Philip Allfrey went ahead and created a properly LaTeX-formatted
PDF download of this book. Thanks, I hate it! 😂 And even Philip noted that “it looks so much
more unfriendly/boring when presented like that”. So we’re not doing that. But carry on,
non-judgemental LaTeX users who work in fields where LaTeX is widespread and/or who just
happen to like it, and who can appreciate that it’s not the only medium for legitimate DH work! I
have no beef with you. (Thank you to @latex_ninja for the provocation to spell out my snark
more clearly, even if we still disagree!.)

https://computational-humanities-research.org/
https://datasittersclub.github.io/site/dsc12_latex.pdf
https://datasittersclub.github.io/site/dsc12_latex.pdf
https://twitter.com/dr_pda/status/1457487936266530816
https://twitter.com/dr_pda/status/1457487936266530816
https://latex-ninja.com/2021/11/07/why-is-it-so-normalized-to-make-snarky-side-comments-about-latex/
https://latex-ninja.com/2021/11/07/why-is-it-so-normalized-to-make-snarky-side-comments-about-latex/

Want to share your coding story? Scan this QR code and share!

https://bit.ly/3Zfbqnb

Thanks for Reading!

	Coding stories
	Quinn
	Roopsi
	Katia

	Quinn
	Danger Noodle Club
	Q Learns some R
	Sneakers, shoelaces, and code

	Dear Reader: More Coding Stories
	Sharon Goetz (via email)
	Jacqui Sahagian (via the Scholars Lab blog, excerpted with permission)
	Heidi Tebbe (via a Twitter thread)
	Jeff Tharsen (via a Twitter thread)
	Paul Vierthaler (via a Twitter thread)

	
	Want to share your coding story? Scan this QR code and share!

